Who We Are

Agrowth is based in Istanbul, Turkey, and plays an effective role as a capable business firm under the supervision of senior leaders with international experience in the agriculture and fertilizer industry. We have aimed to supply products that cause growth in farms and lead the world to sufficient food.

On the other hand, by optimizing every single part of the supply chain we have made trade smoother for our partners.

Why Use Fertilizers?

The goal of nutrient management is to provide an adequate supply of all essential nutrients for a crop throughout the growing season. If the amount of any nutrient is limiting at any time, there is a potential for loss in production. As crop yields increase and as increasing amounts of nutrients are exported from the fields where crops are grown, the nutrient supply in the soil can become depleted unless it is supplemented through application of fertilizers. Fertilizers need to be applied to all types of crop production systems in order to achieve yield levels which make the effort of cropping worthwhile. Modern fertilization practices, first introduced in the last half of the 1800s and based on the chemical concept of plant nutrition, have contributed very widely to the immense increase in agricultural production and have resulted in better quality food and fodder. Furthermore, the farmer’s economic returns have increased substantially due to fertilizer use in crop production.



Plants use minerals present in the soil and water in order to grow and flourish. Just like with humans, if they don’t get enough of these nutrients it can seriously affect their health. Ensuring proper plant nutrition by using fertilizers (organic and mineral) to supplement the nutrients already available in the soil is essential for plant health


Nitrogen is an essential component of amino acids for building proteins, nucleic acids and chlorophyll which converts the sun’s energy into sugars. It is vital for plant metabolism, growth and health.


Phosphorus is vital for energy storage and transfer and membrane integrity in plants. Particularly important in early growth stages, it promotes tillering, root development, early flowering and ripening.


Cobalt is an essential component of some enzymes and co-enzymes that can affect the growth and metabolism of plants. It is also necessary for nitrogen (N) fixation which occurs within the nodules of legumes. Cobalt can increase seeds’ drought tolerance and reduce plant stress.


Potassium has major functions in enzyme activation, transpiration and the transport of assimilates (the products of photosynthesis). It helps plants to retain water during droughts, provides strength to plant cell walls and decreases susceptibility to diseases and insects.


Calcium is needed for biomembrane maintenance. It helps in cell wall stabilization as an enzyme activator, in osmoregulation and in the cation-anion balance and thus also plays important roles in resistance to diseases and abiotic stresses such as drought, heat and cold.


Magnesium is central to the production of chlorophyll which is needed for photosynthesis and healthy green leaf tissue. It reduces crop stress caused by exposure to the sun and high temperatures, while a deficit can often cause stunted growth.


Boron is required for cell wall synthesis and cell expansion. Boron deficiency disrupts reproductive growth, shoot and root growth and pollen viability and hence influences seed set and yield. A lack of boron can result in deformed leaves and poor quality of harvested product.


Chlorine improves plant productivity, plays a role in photosynthesis and is needed for osmosis and ionic balance. It can help to minimize water loss during stressful dry periods and enhance disease resistance.


Nickel is important in plant seed germination, photosynthesis, enzyme functions and nitrogen metabolism. A deficiency affects plant growth, antioxidant systems and response to stress.


Sulphur is integral to all living plant cells and helps to produce amino acids involved in chlorophyll production, proteins and vitamins. It contributes to plant growth and seed formation, improves winter hardiness and helps plants resist diseases.


Zinc participates in chlorophyll formation, is needed to activate many enzymes in plants and is needed for plant immune responses. As a result, it is important for increasing plant resistance to diseases and pests.


Because selenium is chemically similar to sulphur, it is taken up inside plants via sulphur transporters inside the roots. Studies show that selenium improves plant growth and increases tolerance to biotic and abiotic stresses.


Molybdenum is used by plants to reduce nitrates into usable forms and for biological nitrogen fixation by certain species. Insufficient molybdenum means some plants can’t fix nitrogen from the air to make proteins and can hinder normal plant growth.


Silicon increases plant vigor and improves tolerance to abiotic stresses such as drought, salinity or heavy metals. It enhances plant cell walls’ strength and structure, increasing resistance to plant diseases and insect pests. Good silicon nutrition stimulates photosynthesis and improves grain production.


Manganese plays a key role in a variety of plant functions including photosynthesis, enzyme activation, respiration and nitrogen assimilation. Deficiencies can cause weaker structural resistance against pathogens and less tolerance to drought and heat stress.


Iron is another essential component for creating chlorophyll and also serves as a catalyst for cell division which is central to plant growth. Many plants also use iron for their enzyme functions. A lack of iron results in yellowing leaves and poor fruit quality and quantity.


Copper plays a key role in nitrogen and hormone metabolism and is needed for many enzyme activities in plants, as well as for chlorophyll and seed production. Deficiencies can lead to crop failure and increased susceptibility to diseases such as ergot.


Sodium is essential in transporting CO2 during photosynthesis for a limited number of plants. For other plant species, because it is chemically and structurally very similar to potassium, it can also fulfill many of the roles played by potassium, including metabolic ones.


Iodine has been found to be associated with enzymes in plants. Research suggests that it is important for biological processes such as photosynthesis, energy metabolism and calcium-signaling. Iodine deficiency delays flowering and disrupts root, leaf and fruit development as well as plants’ environmental and climatic stress defenses.

Contact Us

Addres: Levent Mahallesi, Alkaranfil   sokak, No.1, Beşiktaş , Istanbul, Turkey

Phone & Fax: +90 212 264 22 00

Mobile Phone: +90 555 162 22 22